		1
0 1	Soluble salts are formed by reacting metal oxides with acids.	Do not wi outside ti box
0 1.1	Give one other type of substance that can react with an acid to form a soluble salt. [1 mark]	
0 1.2	Calcium nitrate contains the ions Ca^{2+} and NO_3^{-}	
	Give the formula of calcium nitrate. [1 mark]	
0 1.3	Describe a method to make pure, dry crystals of magnesium sulfate from a metal oxide and a dilute acid	
	[6 marks]	

A student investigated the temperature change in displacement reactions between metals and copper sulfate solution.

Table 2 shows the student's results.

0 5.2	The student concluded that the reactions between the metals and copper sulfate solution are endothermic.	Do not write outside the box
	Give one reason why this conclusion is not correct. [1 mark]	
0 5.3	The temperature change depends on the reactivity of the metal.	
	The student's results are used to place copper, iron, magnesium and zinc in order of their reactivity.	
	Describe a method to find the position of an unknown metal in this reactivity series.	
	Your method should give valid results. [4 marks]	
	Question 5 continues on the next page	
L	Turn over ►	ı

ſ

IB/G/Jun18/8462/1H

Question	Answers	Extra information	Mark	AO / Spec. Ref.
01.1	any one from: • metal • (metal) hydroxide • (metal) carbonate • alkali	allow named example allow correct formula ignore base allow ammonium hydroxide allow ammonium carbonate allow soluble base allow ammonia	1	AO1 4.4.2.1 4.4.2.2 4.4.2.3
01.2	Ca(NO ₃) ₂	allow $Ca^{2+}(NO_3)_2$	1	AO2 4.4.2.2

Question	Answers	Mark	AO / Spec. Ref.
01.3	Level 3: The method would lead to the production of a valid outcome. All key steps are identified and logically sequenced.	5–6	AO1 4.4.2.3
	Level 2: The method would not necessarily lead to a valid outcome. Most steps are identified, but the method is not fully logically sequenced.		
	Level 1: The method would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.	1–2	
	No relevant content	0	
	Indicative content		
	 use magnesium oxide and sulfuric acid add sulfuric acid to a beaker warm sulfuric acid add magnesium oxide stir continue adding until magnesium oxide is in excess filter using a filter paper and funnel to remove excess magnesium oxide heat solution in an evaporating basin to crystallisation point leave to crystallise pat dry with filter paper 		
	credit may be given for diagrams		
Total		8]

Question	Answers	Extra information	Mark	AO / Spec. Ref.
05.1	all 4 metals labelled and suitable scale on <i>y</i> -axis all bars correctly plotted	magnesium value must be at least half the height of the grid allow a tolerance of ± ½ a small	1	AO2 4.4.1.2 4.5.1.1
		square ignore width and spacing of bars allow 1 mark if copper not included and other 3 bars plotted correctly		
05.2	temperature increases	ignore because it is exothermic ignore references to copper allow (because) energy / 'heat' is transferred to the surroundings allow energy / 'heat' is given out	1	AO3 4.5.1.1
	temperature does not decrease	allow energy / 'heat' is not taken in (from the surroundings) allow the energy of the products is less than the energy of the reactants		

Question	Answers	Extra information	Mark	AO / Spec. Ref.
05.3	suitable method described		1	AO3
	the observations / measurements required to place in order	dependent on a suitable method	1	4.5.1.1
	an indication of how results would be used to place the unknown metal in the reactivity series		1	
	a control variable to give a valid result		1	
	approaches that could be used			
	approach 1: add the unknown metal to copper	sulfate solution (1)		
	measure temperature change (1)			
	place the metals in order of temperature change (1)			
	 any one from (1): same volume of solution same concentration of solutior same mass / moles of metal same state of division of metal 	ו ו		
	approach 2: add the metal to salt solutions of t or	he other metals		
	heat the metal with oxides of the o	other metals (1)		
	or observe whether a chemical chan	ae occurs (1)		
	place the metals in order of tempe compare whether there is a reacti	erature change or on to place in correct order (1)		
	 any one from (1): same volume of salt solutions same concentration of salt sol same (initial) temperature of s same mass / moles of metal o same state of division of meta 	utions alt solutions r metal oxide I or metal oxide		

Question	Answers	Extra information	Mark	AO / Spec. Ref.
05.3 cont.	 approach 3: add all of the metals to an acid (1) measure temperature change or means of comparing rate of reaction (1) place the metals in order of temperature change or rate of reaction (1) any one from (1): same volume of acid same concentration of acid same (initial) temperature of acid same mass / moles of metal same state of division of metal 			
	 approach 4: set up electrochemical cells with the electrode and each of the other measure the voltage of the cell (1) place the metals in order of voltage any one from (1): same electrolyte same concentration of electrolyte same temperature of electrolyte 	he unknown metal as one etals as the other electrode (1)) e (1) yte te		

Question	Answers	Extra information	Mark	AO / Spec. Ref.
06.1	solid (zinc chloride) does not conduct (electricity) or zinc chloride needs to be in solution or molten (because) ions cannot move in the solid or (as) ions can (only) move in liquid / solution	allow liquid / aqueous do not accept references to movement of electrons in zinc chloride	1	AO1 4.4.3.1
06.2	each carbon / atom forms 3 (covalent) bonds one electron per carbon / atom is delocalised (so) these electrons carry charge through the graphite or (so) these electrons move through the structure	allow free electrons for delocalised electrons ignore carry current / electricity	1 1 1	AO1 4.2.3.2
		if no other mark scored, allow 1 mark for delocalised / free electrons		
06.3	use measuring cylinders (instead of test tubes)	allow use burettes allow use (gas) syringes allow Hoffmann voltameter	1	AO3 4.4.3.4
	(because) test tubes cannot measure volume or (because) test tubes have no graduations / scale	allow (so that) volume can be measured	1	

Question	Answers	Extra information	Mark	AO / Spec. Ref.
06.4	 any three from: the volume of hydrogen collected is directly proportional to the time the rate of collection of hydrogen is 0.45 (cm³/min) 	allow the (volume of) hydrogen is collected at a constant / steady rate	3	AO2 4.4.3.4
	• up to 8 minutes chlorine is collected at an increasing rate	allow any value from 6 to 8 minutes allow initially chlorine is collected at an increasing rate		
	 after 8 minutes the rate of collection of chlorine is the same as that of hydrogen or after 8 minutes the rate of collection of chlorine is 0.45 (cm³/min) 	allow any value from 6 to 8 minutes allow after 8 minutes the (volume of) chlorine is collected at a constant / steady rate if neither bullet point 3 nor bullet point 4 is awarded allow 1 mark for chlorine is collected slowly up to 8 minutes and then more quickly allow any value from 6 to 8 minutes		
06.5	chlorine reacts with water or chlorine dissolves (in the solution)		1	AO3 4.3.5 4.4.3.4

Turn over ►

0 5	Sodium thiosulfate solution reacts with dilute hydrochloric acid. The solution becomes cloudy as the reaction takes place.	Do not write outside the box
0 5.1	The equation for the reaction is: $Na_2S_2O_3(aq) + 2 HCI(aq) \rightarrow 2 NaCI(aq) + SO_2(g) + H_2O(I) + S(s)$	
	Explain why the solution becomes cloudy. [2 marks]	
0 5 2	Plan an investigation to show how the concentration of the sodium thiosulfate solution affects the rate of the reaction with dilute hydrochloric acid. Your plan should give valid results.	
	[6 marks]	

Do not write outside the box 8 Turn over for the next question

0 8	A student investigated how temperature a magnesium carbonate and dilute hydroch	affects the rate of reaction betwe loric acid.	een Do not wri outside th box
	This is the method used.		
	1. Heat hydrochloric acid to 30 °C in a co	onical flask.	
	2. Add magnesium carbonate powder to	the conical flask.	
	 Measure the loss in mass of the flask 140 seconds. 	and contents every 20 seconds	for
	4. Repeat steps 1-3 with hydrochloric ac	id heated to 50 °C	
08.1	Explain why the contents of the conical fla	ask lose mass.	[2 marks]
0 8.2	Table 5 shows the student's results for hyperbolic	ydrochloric acid at 30 °C	
	Та	able 5	
	Time in seconds	Loss of mass in grams	
	0	0.00	
	20	0.26	
	40	0.48	
	60	0.67	
	80	0.82	
	100	0.91	
	120	0.96	
	140	0.99	

Question	Answers	Extra information	Mark	AO / Spec. Ref.
04.1	start line drawn in ink	allow start line should have been drawn in pencil	1	AO3 4.8.1.3
	(so) ink dissolves or ink runs in solvent / water	(as) pencil does not dissolve or pencil does not run in solvent / water	1	
	water used (as solvent) or water in beaker	allow ethanol not used	1	
	(so) colours will not dissolve / move		1	
04.2	 any two from: the flowers have no colours in common A / B contain one colour C contains two colours (the colour in) B is most soluble 	allow the flowers are not the same colour allow C is a mixture of colours allow (the colour in) B has the highest R _f value	2	AO3 4.8.1.3
		allow one of the colours in C is the least soluble		
04.3	(distance moved =) $\frac{3.2}{0.65}$	an answer of 4.9 (cm) scores 2 marks	1	AO2 4.8.1.3
	(distance moved) = 4.9 (cm)	allow 4.923076923 (cm) correctly rounded	1	
Total			8	

Question	Answers	Extra information	Mark	AO / Spec. Ref.
05.1	sulfur (formed) (which is a) precipitate	allow S / S ₈ (formed) allow (which is a) solid allow (which is) insoluble	1 1	AO2 4.2.2.2
05.2	Level 3: The method would lead to outcome. All key steps are identifi	to the production of a valid ed and logically sequenced.	5–6	AO1 4.6.1.2
	Level 2: The method would not no outcome. Most steps are identifie logically sequenced.	ecessarily lead to a valid d, but the method is not fully	3–4	
	Level 1: The method would not le relevant steps are identified, but li	ad to a valid outcome. Some nks are not made clear.	1–2	
	No relevant content		0	
	Indicative content method measure (indicated) volume of place sodium thiosulfate in (con measure (indicated) volume of place on cross or between ligh or connect to a gas syringe or other suitable method for timing add hydrochloric acid to (conicated swirl start stopclock / stopwatch measure time for cross to beco or log light transmission over time or measure time for fixed volume repeat and find mean repeat for different concentration or change ratio of sodium thiose control variables concentration of hydrochloric acid (total) volume of sodium thiosu	sodium thiosulfate nical) flask hydrochloric acid t sensor g a change al) flask ome no longer visible of gas to be produced ons of sodium thiosulfate sulfate volume : water volume cid lfate solution		
Total			8]

Question	Answers	Extra information	Mark	AO / Spec. Ref.
08.1	a gas is produced	allow carbon dioxide is produced do not accept an incorrect gas	1	AO2 4.3.1.3 4.6.1.1
	(which) escapes		1	
		max 1 mark if evaporation mentioned		
08.2	all eight points plotted correctly	allow a tolerance of \pm half a small square.	2	AO2 4.6.1.1
		allow six or seven points plotted correctly for 1 mark		
	line of best fit		1	
08.3		an incorrect answer for one step does not prevent allocation of marks for subsequent steps		AO2 4.6.1.1
	correctly drawn tangent at 0.95 g		1	
	correct value for x step and y step from tangent	allow evidence of use of two points on tangent either on the graph or in the text	1	
	(rate =) $\frac{\text{value for y step}}{\text{value for x step}}$		1	
	correctly evaluated and rounded	allow	1	
		(rate =) $\frac{\text{value for x step}}{\text{value for y step}}$		
		(ie inverted division)		
		correctly evaluated and rounded to 2 sig figs		
Total			9	

0 3 Figure 2 shows four test tubes a student set up to investigate the rusting of iron.

This is the method used for each test tube.

- 1. Measure the mass of the nail using a balance.
- 2. Leave the nail in the test tube for 6 days.
- 3. Measure the mass of the nail after 6 days.

Table 2 shows the student's measurements.

Test tube	Mass of nail in g	Mass of nail after 6 days in g
1	8.45	8.91
2	8.46	8.46
3	8.51	8.51
4	9.65	9.65
5	9.37	9.45
6	9.79	9.79

	_	
0	3	1

What is the resolution of the balance the student used?

[1 mark]

Tick **one** box.

1	×	10 ⁻³ g	
1	×	10 ⁻² g	
1	×	10 ⁻¹ g	
1	×	10 ² g	

Question 3 continues on the next page

03. 2 Calculate the difference in percentage increase in mass after 6 days of the nail in test tube **1** and the nail in test tube **5**.

Give your answer to three significant figures.

[4 marks]

Difference in percentage increase in mass = _____

Turn over for the next question

0	4	Rock salt is a mixture of sand and salt.
---	---	--

Salt dissolves in water. Sand does not dissolve in water.

Some students separated rock salt.

This is the method used.

- 1. Place the rock salt in a beaker.
- 2. Add 100 cm^3 of cold water.
- 3. Allow the sand to settle to the bottom of the beaker.
- 4. Carefully pour the salty water into an evaporating dish.
- 5. Heat the contents of the evaporating dish with a Bunsen burner until salt crystals start to form.

0 4 . 1 Suggest **one** improvement to step 2 to make sure all the salt is dissolved in the water.

[1 mark]

0	4	2

The salty water in step 4 still contained very small grains of sand.

Suggest **one** improvement to step 4 to remove all the sand.

[1 mark]

0 4 . 3 Suggest **one** safety precaution the students should take in step 5.

[1 mark]

Another student removed water from salty water using the apparatus in Figure 3.

In both reactions one of the products is copper chloride.

05. 1 Describe how a sample of copper chloride crystals could be made from copper carbonate and dilute hydrochloric acid.

[4 marks]

Sodium carbonate reacts with dilute hydrochloric acid:

 $Na_2CO_3 + 2HCI \rightarrow 2NaCI + H_2O + CO_2$

A student investigated the volume of carbon dioxide produced when different masses of sodium carbonate were reacted with dilute hydrochloric acid.

This is the method used.

0 7

- 1. Place a known mass of sodium carbonate in a conical flask.
- 2. Measure 10 cm³ of dilute hydrochloric acid using a measuring cylinder.
- 3. Pour the acid into the conical flask.
- 4. Place a bung in the flask and collect the gas until the reaction is complete.

0 7 . 1 The student set up the apparatus as shown in Figure 5.

Figure 5

Identify the error in the way the student set up the apparatus.

Describe what would happen if the student used the apparatus shown.

[2 marks]

The student corrected the error.

The student's results are shown in **Table 4**.

Mass of sodium carbonate in g	Volume of carbon dioxide gas in cm ³
0.07	16.0
0.12	27.5
0.23	52.0
0.29	12.5
0.34	77.0
0.54	95.0
0.59	95.0
0.65	95.0

Ta	ble	4
----	-----	---

0 7 . 2 The result for 0.29 g of sodium carbonate is anomalous.

Suggest what may have happened to cause this anomalous result.

[1 mark]

07. **3** Why does the volume of carbon dioxide collected stop increasing at 95.0 cm³? [1 mark]

Question 7 continues on the next page

07.4	What further work could the student do to be more certain about the minimum mass of sodium carbonate needed to produce 95.0 cm ³ of carbon dioxide?	ו [1 mark]
07.5	The carbon dioxide was collected at room temperature and pressure. The volume of one mole of any gas at room temperature and pressure is 24.0 How many moles of carbon dioxide is 95.0 cm ³ ?) dm ³ .
		? marks]
		mol
07.6	Suggest one improvement that could be made to the apparatus used that wo give more accurate results. Give a reason for your answer.	uld 2 marks]

07. 7 One student said that the results of the experiment were wrong because the first few bubbles of gas collected were air.

A second student said this would make no difference to the results.

Explain why the second student was correct.

[2 marks]

Turn over for the next question

0 8	Sodium hydroxide neutralises sulfuric acid.
	The equation for the reaction is:
	$2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$
	Sulfuric acid is a strong acid
0 0 . 1	
	What is meant by a strong acid? [2 marks]
08.2	Write the ionic equation for this neutralisation reaction. Include state symbols.

[2 marks]

A student used a pipette to add 25.0 cm³ of sodium hydroxide of unknown concentration to a conical flask.

The student carried out a titration to find out the volume of 0.100 mol/dm³ sulfuric acid needed to neutralise the sodium hydroxide.

0 8 . 3 Describe how the student would complete the titration.

You should name a suitable indicator and give the colour change that would be seen. [4 marks]

Question 8 continues on the next page