	Section A
	Answer all questions in this section.
0 1	lodide ions are oxidised to iodine by hydrogen peroxide in acidic conditions.
	$H_2O_2(aq) + 2H^{\scriptscriptstyle +}(aq) + 2I^{\scriptscriptstyle -}(aq) \to I_2(aq) + 2H_2O(I)$
	The rate equation for this reaction can be written as
	$rate = k[H_2O_2]^a[I^-]^b[H^+]^c$
	In an experiment to determine the order with respect to $H^+(aq)$, a reaction mixture is made containing $H^+(aq)$ with a concentration of 0.500 mol dm ⁻³
	A large excess of both H_2O_2 and I^- is used in this reaction mixture so that the rate equation can be simplified to
	$rate = k_1[H^+]^c$
01.1	Explain why the use of a large excess of H_2O_2 and I^- means that the rate of reaction at a fixed temperature depends only on the concentration of $H^+(aq)$. [2 marks]
0 1.2	Samples of the reaction mixture are removed at timed intervals and titrated with alkali to determine the concentration of $H^+(aq)$.
	State and explain what must be done to each sample before it is titrated with alkali. [2 marks]

0 1.8	A general equation for a reaction is shown.
	$A(aq) + B(aq) + C(aq) \rightarrow D(aq) + E(aq)$
	In aqueous solution, A, B, C and D are all colourless but E is dark blue.
	A reagent (X) is available that reacts rapidly with E. This means that, if a small amount of X is included in the initial reaction mixture, it will react with any E produced until all of the X has been used up.
	Explain, giving brief experimental details, how you could use a series of experiments to determine the order of this reaction with respect to A . In each experiment you should obtain a measure of the initial rate of reaction.
	[6 marks]

Section A

Answer **all** questions in the spaces provided.

- **1** This question involves the use of kinetic data to calculate the order of a reaction and also a value for a rate constant.
- **1 (a)** The data in this table were obtained in a series of experiments on the rate of the reaction between compounds **E** and **F** at a constant temperature.

Experiment	Initial concentration of E / mol dm ⁻³	Initial concentration of F / mol dm ⁻³	Initial rate of reaction / mol dm ⁻³ s ⁻¹
1	0.15	0.24	$0.42 imes 10^{-3}$
2	0.45	0.24	$3.78 imes 10^{-3}$
3	0.90	0.12	$7.56 imes 10^{-3}$

1 (a) (i) Deduce the order of reaction with respect to E.

	(Space for working)
(ii)	Deduce the order of reaction with respect to F .
	(1 mark)
	(Space for working)

1 (a)

Do not write outside the box

1 (b) The data in the following table were obtained in two experiments on the rate of the reaction between compounds **G** and **H** at a constant temperature.

Experiment	Initial concentration of G / mol dm ⁻³	Initial concentration of H / mol dm ⁻³	Initial rate of reaction / mol dm ⁻³ s ⁻¹
4	3.8 × 10 ⁻²	2.6 × 10 ⁻²	$8.6 imes 10^{-4}$
5	$6.3 imes 10^{-2}$	$7.5 imes 10^{-2}$	To be calculated

The rate equation for this reaction is

rate =
$$k[\mathbf{G}]^2[\mathbf{H}]$$

1 (b) (i) Use the data from Experiment **4** to calculate a value for the rate constant *k* at this temperature. Deduce the units of *k*.

1 (b) (ii) Calculate a value for the initial rate of reaction in Experiment 5.

.....

(1 mark)

0 3

Turn over ►

		Sec	tion A	
		Answer all questions	in the spaces provided	
1 (a)	The data in the following table were obtained in two experiments about the rate of the reaction between substances B and C at a constant temperature.			
	Experiment	Initial concentration of B /mol dm ⁻³	Initial concentration of C / mol dm ⁻³	Initial rate/mol dm ⁻³ s ⁻¹
	1	$4.2 imes 10^{-2}$	$2.6 imes10^{-2}$	$8.4 imes10^{-5}$
	2	6.3 × 10 ^{−2}	$7.8 imes 10^{-2}$	To be calculated
	The rate equa	ation for this reaction is	known to be	
		rate =	<i>k</i> [B] ² [C]	
1 (a) (i)	Use the data t temperature a	from Experiment 1 to ca and deduce its units.	alculate a value for the	rate constant <i>k</i> at this
	Calculation			
	l Inits			
				(3 marks)
	(Extra space)			
1 (a) (ii)	Calculate a va	alue for the initial rate ir	n Experiment 2 .	
				(1 mark)

1 (b) The data in the following table were obtained in a series of experiments about the rate of the reaction between substances **D** and **E** at a constant temperature.

Experiment	Initial concentration of D /mol dm ⁻³	Initial concentration of E /mol dm ⁻³	Initial rate/mol dm ⁻³ s ⁻¹
3	0.13	0.23	$0.26 imes 10^{-3}$
4	0.39	0.23	$2.34 imes 10^{-3}$
5	0.78	0.46	9.36 × 10 ^{−3}

1 (b) (i) Deduce the order of reaction with respect to **D**.

(1 mark) 1 (b) (ii) Deduce the order of reaction with respect to E. (1 mark)

Question 1 continues on the next page

8

The compound (CH₃)₃CBr reacts with aqueous sodium hydroxide as shown in the 1 (c) following equation. $(CH_3)_3CBr + OH^- \longrightarrow (CH_3)_3COH + Br^-$ This reaction was found to be first order with respect to (CH₃)₃CBr but zero order with respect to hydroxide ions. The following two-step process was suggested. $(CH_3)_3CBr \longrightarrow (CH_3)_3C^+ + Br^-$ Step 1 Step 2 $(CH_3)_3C^+$ + $OH^ \longrightarrow$ $(CH_3)_3COH$ **1 (c) (i)** Deduce the rate-determining step in this two-step process. (1 mark) 1 (c) (ii) Outline a mechanism for this step using a curly arrow. (1 mark)

	Section A	
	Answer all questions in the spaces provided.	
1	The rate of hydrolysis of an ester X (HCOOCH ₂ CH ₂ CH ₃) was studied in alkaline conditions at a given temperature. The rate was found to be first order with respect the ester and first order with respect to hydroxide ions.	ect to
1 (a) (i)	Name ester X.	
	(1	mark)
1 (a) (ii)	Using ${\bf X}$ to represent the ester, write a rate equation for this hydrolysis reaction.	
		mark)
1 (a) (iii)	When the initial concentration of X was 0.024 mol dm ⁻³ and the initial concentration of hydroxide ions was 0.035 mol dm ⁻³ , the initial rate of the reaction was 8.5×10^{-5} mol dm ⁻³ s ⁻¹ . Calculate a value for the rate constant at this temperature and give its units.	on
	Calculation	
	Units	
	(3	marks)
1 (a) (iv)	In a second experiment at the same temperature, water was added to the original	J

1 (a) (iv) In a second experiment at the same temperature, water was added to the original reaction mixture so that the total volume was doubled. Calculate the initial rate of reaction in this second experiment.

> (1 mark)

Turn over

11

3 Propanone and iodine react in acidic conditions according to the following equation.

 $CH_3COCH_3 + I_2 \longrightarrow ICH_2COCH_3 + HI$

A student studied the kinetics of this reaction using hydrochloric acid and a solution containing propanone and iodine. From the results the following rate equation was deduced.

rate = k[CH₃COCH₃][H⁺]

3 (a) Give the overall order for this reaction.

(1 mark)

3 (b) When the initial concentrations of the reactants were as shown in the table below, the initial rate of reaction was found to be 1.24×10^{-4} mol dm⁻³ s⁻¹.

	initial concentration / mol dm ⁻³
CH ₃ COCH ₃	4.40
I_2	5.00×10^{-3}
H^+	0.820

Use these data to calculate a value for the rate constant, k, for the reaction and give its units.

Calculation	
Units	

(3 marks)

3 (c) Deduce how the initial rate of reaction changes when the concentration of iodine is doubled but the concentrations of propanone and of hydrochloric acid are unchanged.

(1 mark)

0 9

Question	Answers	Additional Comments/Guidelines	Mark
	H_2O_2 and/or I^- concentration change is negligible / H_2O_2 and/or I^- concentration (effectively) constant	Only the <u>concentration</u> of H ⁺ changes.	
01.1	so have a constant/no effect on the rate / so is zero order (w.r.t. H_2O_2 and $\Gamma)$ / a and b are zero	Ignore references to H^+ is limiting reagent / rds / H_2O_2/I^- not in rate equation Do not allow reference to catalyst.	2
	Stop the reaction / quench		
01.2	By dilution / cooling / adding a reagent to react with H_2O_2/I^-	Allow valid suggestions about how to stop the reaction. Do not allow reaction with acid/alkali / neutralisation for M2 Do not penalise other named reagents.	2
		indicator	
01.3	M1: constant gradient OR <u>change/decrease</u> in concentration is proportional to time	Allow constant rate / rate = k Ignore reference to straight line Not increase in concentration / concentration is inversely proportional / concentration (on its own) is proportional	2
	M2: as [H ⁺] changes/decreases	M2 dependent on correct M1 Allow rate v concentration graph would give horizontal straight line owtte Allow so [H ⁺] has no effect on the rate	

umbers in M1 3 as including [H⁺]
n point
1

	This question	This question is marked using levels of response. Refer to the Mark		Indicative Chemistry content Method 1		
	Scheme Instructions for examiners for guidance on how to mark this question		Stage 1 Preparation			
	Level 3 5-6 marks	All stages are covered and the explanation of each stage is correct and virtually complete. Answer is coherent and shows progression through all three stages.	1a 1b 1c	Measure (suitable/known volumes of) some reagents (ignore quoted values for volume) Measure (known amount of) X / use a colorimeter into separate container(s) – (allow up to two reagents and X measured together into one container); reference to A, B or C added last. NOT if X added last.		
		A clear evaluation of how the order is	Sta	ge 2 Procedure		
01.8	Level 2 3-4 marks	A clear explanation of now the order is determined from the results is needed to show coherence. All stages are covered (NB 'covered' means min 2 from stage 2) but the explanation of each stage may be incomplete or may contain inaccuracies OR two stages covered and the explanations are generally correct and virtually complete Answer is coherent and shows some progression	2a 2b 2c 2d 2e	Start clock/timer at the point of mixing (don't allow if only 2 reagents mixed) (allow even if X not added or added last)I Time recorded for appearance of blue colour/specific reading on colorimeter/disappearing cross Use of same concentration of B and C / same total volume / same volume/amount of X Same temperature/use water bath Repeat with different concentrations of A (can be implied through different volumes of A and same total volume)	6	
		stage may be out of order and incomplete	Sta	ge 3 Use of Results		
	Level 1 1-2 marks	Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR only one stage is covered but the explanation is generally correct and virtually complete	3a 3b 3c	1/time taken is a measure of the rate plot of 1/time against volumes/concentrations of A or plot log(1/time) vs log(volume or concentration of A) description of interpreting order from shape of 1/time vs volume or concentration graph / gradient of log plot gives order / allow interpretation of time vs concentration graph / ratio between change in concentration and change in rate (o g. $2x[A] = 2x$ rate so 1^{st} order)		
		Answer shows some progression between two stages				
	Level 0 0 marks	Insufficient correct Chemistry to warrant a mark				

Indicative Chemistry content – Alternative Method Using Colorimetry and repeated Continuous Monitoring

Stage 1 Preparation

- 1a Measure (suitable/known volumes of) **A**, **B** and **C** (ignore quoted values for volume)
- 1b Use of colorimeter
- 1c into separate container(s) (allow up to two reagents measured together into one container) ignore use of X

Stage 2 Procedure

- 2a Start clock/timer at the point of mixing
- 2b Take series of colorimeter readings at regular time intervals
- 2c Use of same concentration of **B** and **C** / same total volume / (same volume/amount of **X**)
- 2d Same temperature
- 2e Repeat with different concentrations of A (can be implied through different volumes of A and same total volume)

Stage 3 Use of Results

- 3a Plot absorbance vs time and measure/calculate gradient at time=0
- 3b plot of gradient against volumes/concentrations of **A** or plot log(1/time) vs log(volume or concentration of **A**)
- 3c description of interpreting order from shape of 1/time vs volume or concentration graph / gradient of log plot gives order

Question	Marking Guidance	Mark	Comments
1(a)(i)	2 or two or second or [E] ²	1	
1(a)(ii)	1 or one or first or [F] ¹ or [F]	1	
1(b)(i)	$k = \frac{8.6 \times 10^{-4}}{(3.8 \times 10^{-2})^2 \times (2.6 \times 10^{-2})}$	1	mark is for insertion of numbers into a correctly rearranged rate equ, $k =$ etc. AE (-1) for copying numbers wrongly or swapping two numbers.
	= 22.9 (Allow 22.9 – 24 after correct rounding)	1	
	$mol^{-2} dm^{+6} s^{-1}$	1	Any order.
1(b)(ii)	$6.8(2) \times 10^{-3}$ (mol dm ⁻³ s ⁻¹)	1	Allow 6.8×10^{-3} to 6.9×10^{-3}
	OR if their k is wrong, award the mark consequentially a quick check can be achieved by using $\frac{\text{their answer}}{\text{their k}} = 2.9768 \times 10^{-4} \text{ Allow } 2.9 - 3.1 \times 10^{-4} \text{ for the mark}$		Ignore units.

Question	Marking Guidance	Mark	Comments
1(a)(i)) $k = \frac{8.4 \times 10^{-5}}{(4.2 \times 10^{-2})^2 \times 2.6 \times 10^{-2}}$ OR $\frac{8.4 \times 10^{-5}}{(1.76 \times 10^{-3}) \times 2.6 \times 10^{-2}}$		Mark is for insertion of numbers into a correctly rearranged rate equ , $k = etc$. If upside down, score only units mark from their k
	= 1.8(3)	1	AE (-1) for copying numbers wrongly or swapping two numbers
	mol ⁻² dm ⁺⁶ s ⁻¹	1	Any order If k calculation wrong, allow units consequential to their $k = expression$
1(a)(ii)	5.67 × 10 ⁻⁴ (mol dm ⁻³ s ⁻¹) OR their $k \times 3.1 \times 10^{-4}$	1	Allow 5.57×10^{-4} to 5.7×10^{-4}
1(b)(i)	2 or second or [D] ²	1	
1(b)(ii)	0 or zero or [E] ⁰	1	
1(c)(i)	Step 1 or equation as shown	1	Penalise Step 2 but mark on
1(c)(ii)	$H_{3}C - \underbrace{\overset{CH_{3}}{\underset{CH_{3}}{\bigcap}}}_{CH_{3}} \operatorname{Br}_{or} (CH_{3})_{3}C - \underbrace{\overset{C}{\underset{Br}{\bigcap}}}_{Br}$ Ignore correct partial charges, penalise full / incorrect partial charges	1	If Step 2 given above, can score the mark here for $(CH_3)_3 \stackrel{+}{C} \stackrel{-}{\bullet} \stackrel{-}{\bullet}$

Question	Marking Guidance			Comments		
1(a)(i)	propyl methanoate			must be correct spelling		
1(a)(ii)	rate = k[X][OH ⁻]		1	allow $HCOOCH_2CH_2CH_3$ (or close) for X allow () but penalise missing minus		
1(a)(iii)	$k = \frac{8.5 \times 10^{-5}}{(0.024)(0.035)}$	In (a)(iii), if wrong orders allow	1	mark is for insertion of numbers in correct expression for k If expression for k is upside down, only score units conseq to their expression		
	$mol^{-1} dm^{3} s^{-1}$	1 for conseq units	1	any order		
1(a)(iv)	2.1(3) × 10 ⁻⁵		1	or 2.1(2) × 10 ⁻⁵ ignore units allow 2 sf NB If wrong check the orders in part (a)(iii) and allow (a)(iv) if conseq to wrong k See * below		

1(a)(v)	1.3×10^{-4} (1.28 × 10 ⁻⁴)	1	allow (1.26×10^{-4}) to (1.3×10^{-4}) ignore units
			allow 2 sf
			NB If wrong check the orders in part (a)(iii) and allow (a)(iv) if conseq to wrong k
			See ** below
	(ii) and also first mark in a(iii) have already been lost] 7 × 10 ⁻⁶) (allow answer to 2sf) .32 × 10 ⁻⁴) (allow answer to 2sf)		
	The numbers will of course vary for different orders.		
1(a)(vi)	Lowered	1	if wrong, no further mark
	fewer particles/collisions have energy >E _a	1	not just fewer successful collisions
	fewer have sufficient (activation) energy (to react)		
1(b)	Step 2	1	if wrong, no further mark
	(this step with previous) involves one mol/molecule/particle A and two Bs	1	
	or 1:2 ratio or same amounts (of reactants) as in rate equation		

Question	Part	Sub Part		Mark	Comment
3	(a)		2 or two or second	1	
3	(b)		$k = \frac{1.24 \times 10^{-4}}{(4.40)(0.82)}$ = 3.4 <u>4</u> ×10 ⁻⁵ (min 3sfs)	1	mark is for insertion of numbers into a correctly rearranged rate equ , $k = etc$ if upside down, (or use of I_2 data) score only units mark
			mol ⁻¹ dm ³ s ⁻¹	1	any order
3	(C)		no change or no effect or stays the same or 1.24×10^{-4}	1	
3	(d)		1 or 2 or 1 and 2 rate equ doesn't involve I_2 or only step which includes 2 species in rate equ	1	if wrong no further mark but mark on from no answer
3	(e)		$H \xrightarrow{H} C \xrightarrow{+} C \xrightarrow{+} CH_3 \longrightarrow H \xrightarrow{H} C \xrightarrow{-} CH_3 + H^+$	1	any second arrow loses the mark